1. Theorem: Ratio Test

Let $\sum_{n=1}^{\infty} a_n$ be a series with nonzero terms, and suppose that $\lim_{n \to \infty} \frac{|a_{n+1}|}{|a_n|} = \rho.$

- 1. If $\rho < 1$, then series converges absolutely, hence converges.
- 2. If $\rho > 1$ or $\rho = \infty$, the series diverges.
- 3. If $\rho = 1$, the test is inconclusive.

2. Theorem: Root Test

Let
$$\sum_{n=1}^{\infty} a_n$$
 be a series, and suppose that
 $\lim_{n \to \infty} \sqrt[n]{|a_n|} = \rho.$

- 1. If $\rho < 1$, then series converges absolutely, hence converges.
- 2. If $\rho > 1$ or $\rho = \infty$, the series diverges.
- 3. If $\rho = 1$, the test is inconclusive.